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» This HSR network is the most heavily used railway system in the
world.

»Daily ridership has grown from 7z Million in 2007 to 2.5 Million in
2014.
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» Currently, about 70% of the newly-built high-speed railway uses
ballastless track.

» The high-speed railway network will reach 20,000 km in 2020,
and the proportion of ballast track is growing when the high-speed

rail lines extend to western areas.
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Ballastless or ballast track?-A controversial issue
B —

Ballastless track Ballast track

Track stability Higher longitudinal and lateral Relatively low longitudinal and lateral
stability. stability.
Maintenance Less maintenance for geometry Frequent non-uniform track
degradation and maintenance
Cost Higher initial construction cost, but Relatively low construction costs but
lower life cycle cost higher life cycle cost
Riding quality Excellent riding comfort even at Good riding comfort at speeds 200-
speeds greater than 300 km/h 300 km/h
Life Good Life expectation (about 70 Life expectation is about 15 years
Expectation years)
Ballast splash  No ballast particle splash Ballasts fly up and cause serious
damage to rails and wheels.




Railway deterioration

0 Trackbed and subsoil deformations are the main sources of track

settlement under train traffic loads.

O Uneven track settlement will intensify the dynamic impact between train
and track, and significantly accelerate the deterioration of the track
structure and the track roadbed, increasing maintenance cost, risk of

train derailment and foundation failure.

O High-speed train places high demand on the track alignment(of both

vertical and lateral directions).



Effect of subgrade settlement on track responses
-

O Train-track-subgrade dynamic interaction model
— Train speed: 350km/h

— Subgrade settlement: 30mm/20m
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Effect of subgrade settlement on track responses

O Train-track-subgrade dynamic interaction model

— Train speed: 350km/h
— Subgrade settlement: 30mm/20m

40

Track settlement center

- - - Normal track position

stress on the surface of subgrade( kN/m”)

time(s)

1.2

Dynamic loading on
subgrade increases
by 45%

OChinese high-speed railway design code limits subgrade settlement: 15mm/20m



Railway deterioration

O Railway track is a complex soil-structure interaction system. The track
substructure consists of several soil layers with different soil
materials and compact conditions.

OO0 At the same time, high-speed railways are subjected to several kinds
of weather-induced loads in addition to regular traffic loadings.

O Extreme rainfall, storms and floods are typical climate impacts on
transportation infrastructure.

O The purpose of this study is to investigate the impact of water level
rise on the dynamic performance and permanent deformation of
track substructure under train moving loading based on full-scale
model tests.
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Full-scale model tests for high-speed railway
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Concrete base

Full-scale model tests for high-speed railway
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True size of track structure and substructure
Realistic geomaterials in track substructure
Realistic train load intensity

Effect of high-speed train moving load
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Full scale model test facility for HSR at Zhejiang University
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Dynamic loading on fasteners due to train moving

—
O The principle of simulating moving trains is to apply equivalent

vertical loading at individual fastener.
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Dynamic tests with train moving loads

 Eight actuators are used in the current test for a portion of high-
speed railway(5m long).

1 The proposed train-track-subgrade interaction solving algorithm
has been implemented and integrated into the controlling software
of the testing system. The highest train speed achieved in the tests
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Instrumentation
e —

® Strain gauges on track structure

® Accelerometers O Piezometer A Displacement sensor
® Velocity sensors
Displacement sensors
Earth pressure cells
Settlement plates

IS settlement sensors
Piezometers
Temperature sensors

O Earth pressure cell I Velocity sensor

IS settlemen

Strain gauge Earth pressure cell Settlement plate sensor



Comparison with in-situ tests

Field measurement on Wu-Guang high-speed railline

O Comparisons with the field
measurements have fully validated
the reliability of the testing
apparatus and test scheme.
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Dependency of dynamic stresses on train speed

( Dynamic soil stress at roadbed, subgrade and su
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Dynamic stresses with train speed and depth

O Amplification factor of dynamic stress
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Dynamic stresses with train speed and depth

O Attenuation coefficient of dynamic soil stress

7

z For ballasted railway, a=0.42,b=0.89;
=]—-— For ballastless railway of field test, a=1.39,b=1.12;
a+b-z For ballastless railway of model test, a=2.66,b=1.11.
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Influence of water level rising
e

0 Water level rises are mostly due to rainfall or underground water
lifting

O In the test, water levels rose gradually from the subsoil bottom to the
subgrade surface, and then fell back to the subsoil surface.
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Influence of water level rising

O Resonant frequency of the track-substructure system

» Sinusoidal loads of 100kN with frequency range of 1-24 Hz were applied to
the track structure using single actuator.

(0 Water level rising results in decrease in the track system’s stiffness,
and consequently decrease in the resonant frequency

0.79 _a— Case 1: Water level at subsoil bottom
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Influence of water level rising

J When water level reaches the subsoil surface, the track
vibration intensity increases by 16%, and track stiffness

decrease correspondingly.
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Influence of water level rising

1 When water level reaches the subgrade surface

® The elastic deformations of track in this case are much
larger(48%) than those in the normal and saturated subsoil
case(16%).
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Influence of water level rising

d Track’s dynamic response amplitudes grow with the
rise of water level, and this effect is intensified by the
train’s increasing speed.
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Contact pressure below track structure

1 Contact pressure between concrete base and roadbed surface
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Dynamic stresses with train speed and depth

O Attenuation coefficient of dynamic sZoiI stress
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® Water level rising reduces the modulus of soil layers, leading to the
change in the soil stress attenuation.

®Dynamic soil stresses attenuate more slowly at higher train speeds.



Pore water pressure

0 Pore water pressure recorded in test case 3
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®Pore water pressure in the subgrade is about 0.1-0.4 kPa, and does
not accumulate significantly.

®Pore water pressure in the subsoil is about 0.4-0.8 kPa, and
accumulates significantly at higher train speeds.



Accumulated settlement

(J Case 1: water level at the subsoil bottom.
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® Increasing train speed leads to additional settiement development.

® The accumulated settlement is easier to reach a stable state under
repeated train moving loads when train speed is below 216 km/h, while it
increases faster at train speed of 360 km/h.

® Total accumulated settlementis only 2.5 mm for the normal subgrade.



Accumulated settlement

(] Case 2: water level at the subsoil surface.

Pore water pressure (kPa)
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Accumulated pore water pressure at subsoil

® Water level rise leads to additional settlement development, which
increases to 7.4 mm when the subsoil are under water level.

® Settlement development of the subsoil is caused by soil strength
| reduction and excess pore pressure accumulation and dissipation.




Accumulated settlement

 Case 3: water level at the subgrade surface.
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® Accumulated settlement increases to 60mm when water level reaches
subgrade surface, and is hard to reach a stable state.

® Settlement development of the subgrade may be caused by soil
strength reduction due to water lubrication and decrease in effective soil



Conclusions

O A full-scale model test device has been developed to investigate dynamic
performance and long-term deformation of high-speed railway under
different water levels. The highest train speed in the model test is up to 360
km/h.

O Variation of water level in the subsoil has little influence on the dynamic
performance. However, the resonant frequency of the submerged subgrade
decreases from 16 Hz to 12 Hz.

O The transverse distribution of contact pressure under the track structure
changes significantly with the variation in water level.

d Water level rise lead to additional track deformation and loss of stiffness.

d Excess pore water pressure accumulates and dissipates in the soils,
companied by the development of permanent deformation in soils.
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